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FuU design of fuzzy controllers using genetic algorithms
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pa_ examines the applicability of genetic algodthms in the complete design of fuzzy logic conlrdlen. While
GA has been used before in the development of rule sets or high i_rformance membership functions, the interdependence
betwem these two comlx)nents dictates that they should be designed tog_ simultaneously. GA is fully capable of creating
complete fuzzy conlroUers given the equations of motioe of the system, eliminating Ihe need for human input in the design
loop. We show the application ofthisnew method to the development of a cart controtl_.

1.1N'_, ODU,_'ION

Genetic alge'i_rns (GA) axe powerful u_'ch procedures based m the mechanics of na_ral selection. They use
operations found in na_al genetics to guide them through the paths in t_e searchspace. They provide a means to search
poorly understood, irregular spaces. Because of its _, GA hw been successfully applied to a variety of function

_ons, self-adaptive control sys_ms, and learning system&
Fuzzy systems arose fzom the desire to describe complex systems wilh mmpk tools. In conlrast to boolean _

whae an item either has a membership of {I} or [0} in ItI_ fuzzy systems allow for degem of membership over the range
{0-I). This imitates the iinguis_ approach to decribm' g coMifiom OJ:. cold, very warm) used in everyday life.

Interest in fuzzy controners has recently been gaining in popularity across a broad may of disciplines and with good
reason. Fuzzy contrdlers allow for a simpler, more human approach to control design and do not demand me mathematic1
modelling knowledge of more conventional control design methods. As systems become more complex, the ability to describe
them mathematically becomes mote di_ulL For this_ fuzzy co_lkn provide _=onable, effective alternatives to
cla_c_ or state-spe_ con_lle_

By using a I/nguisu'c approach, it is easy to see that fuzzy them_ can be in=grated into control theory using rules
oftheform IF{condition} THEN{action}. Usingtheserules, ore can create aftmctiomlconlroller. The problem with this
method comes hem detaminingtheeppmprialerulesanddetemdningtheshapeofthemembershipfunctlons.

This work sought to use genetic algorithms in the design and implementation offuzzylogiccontroll=s.Ptevioudy,
generation of membership functions had been a task mainly done either ilenfivdy, by _al.and-etrof, _ by human expert.
A task such as this was a natural candidate for GA since GA will allempt to create membership functions that will cause the
controller to perform optimaUy. In much the same n_ner, GA could be used to generate the rules which use these
membership functions. Work had been done using GA to do each of these tasks separately, but since the two are co-
dependent, using a hand-dedgned rule set wilh GA designed membership functions or hand-designed membership functions
with a GA designed rule setdoesnotuseGA to its fell advantage. "the& the use of GA to determine both sundtaneoudy
and determine an optimal ofnear-oplimal controller was the main objective of this work.

The problem used m check the effectiveness of this method wm centering and stopping a cart located on a one-
dimensional Irack as described by Thd_. Given an initial vdodty and location on the track, the objective was to determine

a conm3Uef which will bring the cart m zero velocity and zero location in minimum time. DiHerent contrdle_ were designed
for this problem by dividing the inlmt and output spaces into different partition sizes.

2. GENETIC ALGO_TH]_ AND FUZZY CONTRO_

 neec  u. thm,

Genctk: AlgorUhms a_e gen¢_ ptepo_ optimizafim algodthn_ wilh a _ _t They provide a
means to sean:h poody _ _ ,paces. John HoUand odsmny developed GA and govided its
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foundation in his book, A.daptafion in Natural and Artifici_I S.ystem_. Holland developed GA to simulate some of the

processes observed in n_t.utal evolution. Evolution is a process that operates on chromosomes (organic devices for encoding
the structure of living I_ngs) ratherthan on living beings. Natural selection links chromosomes with the performance of their
decoded structure. The processes of natural selecfi_ muse those chromosomes that encode successful su'uctures to reproduce

more often than those that do not. Recombination _ create different chtomogomes in children by combining material
from the chromosomes of the two patents, Mutation may cause the chromosomes of childrm to be different from those of
their parents.

GA _y incorlxrates these features of natural evolution in computer algorithms to solve difficult problems
in the _w_ that nature has done - 0trough evolution. GA requires the problem to be maximized (or minimized) m be stated
in the fm'm of a cost (objective) function. In GA, a set of variables for a given problem is encoded into a suing (or other
coding slrucl_), analogous to a chrom_ome in nalure. These slrings are converted to a n_ value and then linearly
mapped over the range allowed for the variable. This value is then used to evaluate the cost function, yielding a "fimeas."

GA selects parents from a pool of strings (l_opulafion) according to the basic criteria of "mrvival of the fitteSL" It reproduces
new strings by recombining parts of the selected parents in a random manner. Although GA is a stochastic method, it is not

a simple random walk. It exploits historical information to guide the search with imtwoved performance.
The repopulationof thenextgenerationisdine usingthreemethods:relxod_tion,crossover,and mutation.

Relr_uction means simply that strings with high illnesses should receive multiple copies in the next generation while the
strings with low fimesses receive fewer copies or even none at _. Crossover refers to taking a fit string, split_g it into two
pansata randomlygener_ed_'ossoverpointand recoml:iningitwithanothers_'ingwhichhasalsobeensplitatthesame
crossoverpoint.Thisprocedureservestopromotechangesinthebeststringswhichwillgivethem evenhigherfimesses.

Mutationistherandomalterationofabitinthestring.Thiswillassistinkeepingdiversityinthepolxtlafion.

In explaining the inner workings of Oh., let us initially make a few definitions s. Since we am dealing _uith binary
strings, a notation must be developed to denote similarity subsets (scSemata). A schema is a similarity subset which contains
strings that have similarities at some bit positions. We can expand this thinking even further with the introduction of a wild
card character, *, in addition to the binary set (0,1}. For example, the set {0001,0101,0011} can be described by the
slrnilarltytemplate0"*I.Usingthisnotation,we cannow defineaschema'sorderanddeflmnglength.Fora _ven schema,

h, its order o(h) is defined as the number of fixed bit positions within that schema. The defining length of a schema, _'h),
is the distance between the outermost defining pceitions of a schema. As an example, the schema 01"***0 has order 3 and
defining length 5.

With these definitions we can now present the fundamental theorem of genetic algorithms, the schema theorem _. The
schema theorem enables us to calculate a lower bound on the expected number of a particular schema, h, following
reproduction, crossover, and mutation". The theorem is stated as:

(i)

where _. is the expected number of schema_ t is the generation index, I is the overall string length, f(h) is the average fitness
of those strings representing the subset h, f is the average fimeas of the entire population, p, and 13, are. respectively, the
crossover and mutation probabili_es. Examining the schema thencem, we se_ tha_ it states that a schema v_J! grow when it
is short, has low order, and has above average fitness.

Givm a history of genetic algorithms, one might ask what advantages does it have over other methods. GA's
primary advantage over other methods is its robustness. GA works tim3ugh function evaluation, not flu'ough differentiation
or other such means. Because of this Iraik GA does not case what type of problem it is asked to maximize, only that it be
properly coded. Thus GA is able to solve a wide range of problems: linear, nonlinear, discontinuous, discrete, etc.

2o. FuzzyConggllen 

Fuzzy theotV extends from the lmbility to deacribe some physical pheaome_ with tbe exact mattmnafical models
dictaUsdby more conventional, boolean models. Fuzalneas _ event ambil_fity.Itmeastm_sfilede_ee towhich an
event occu_ not whether it occur. The fact that fuzziness is lacking in lxecision has led to its dismissal by some

researclz_. Others, however, see fuzzy Iheory ss a powerful tool in the exploration of complex lxoblems because of its
ability to d_m'mine ouqmts for a given set of inputs without using a mathematical model As Jain noted_, the basic motivation
behind fuzzy set Iheot_ was the fact that the col_ventioml me0mdl had beo3me m complex that rese_he_ trying to apply
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lhem bad tomake a choicebetweena complexsystemanda complex tooL

Fuzzy thecayowesa :greatdealtohuman langtmgc.As explainedby Leung7.daffylanguagescannotbe p_cisely
charac_ oneitherthesyntacticorsemanticlevel.When we speakoftemperatureintermssuchas"hot"or"cold"

of inphysicaluniu suchas degreesFahrenheitorCelsius,we canseelanguagebecomesa fuzzyvariablewhose spatial

denotatim is impn_ise. In _ sense, fuzzy theory becomes easily unders/ood _ it can be made to resemble a h/gh
level language instead of a mathematical language. As an example, consider the fuzzy variable TEMPERA/ERE. The fuzzy
set describing TEMPERA_ can be catego_d as five _zy-set values {veay cold (VC), cold (C), medium (M), hot (H),
very hot(VH)}. Figure 1 shows one possible set of the membership functions of the fuzzy-set values VC, C, M, H, and VII
for the nmge of TEMPERAI'ORE 0_-130 e F. Note that every value of tempefatm_ has a membership in every fuzzy-value
set although in most cases this membenhip is 0.

it

Figure 1 Fuzzy-Set Variablesfor the Fuzzy Variable
TEMPERATURE

Also, some values of TEMPERATURE overlap into two fm_-value sets, For example a temperature _ 47 ° has membership

in both "cold" and "medium" although the membership in "medium" is larger than the membership in "cold." This example
shows how membenhip functions play the role of discretizing the linguistic teeminology to values a computer can .use. Of
course in most respects these membership f_ncfions are subjective in nature. What determines the ranges for these fto.zy-set
values or the shape of these membership functions? In most cases, membenhip func_om are designed by experts with a
knowledge of the system being analyzed. However, human experts cannot be expected m provide optimal membership
functions for a given sys_m. Often, these _ are modified iteraliveJy while W/inS to obtain op_n_lity.

How are these membemhip functions used in fuzzy conlzoUa_ In its simplest form a fuzzy logic controller is.
_dmply a set of mle_ describing a set of actions to be taken for a given set of inletS. It is easiest to think of these rules as
if-thenstatementsoftheformIF{setof inputs] THEN{outputs}.Fortheexample above, a fuzzy con_roll_ can be usedfor
a_ One rule mightbelPlvery cold} THFJv'{tum f'unm_ on f_ x minetesl.Anotber may belF{hot} THF)Titum
air condition_ ou for y minutes}. Since "very cold" wplie_ to a range of temperatures which also may belong to another
fuzzy-set v_rinble (i.e. "cold') which has rules of its own, the ompet which results born "defuzzifica_n" of the application
of these rules must take into account how much each rule epplies before determining how much output must be applied.
Usually a centroid method is used to account for the influence of each rule on the output.

2.3 Am_licabilitv of C_A to PuzzY Con_r_l_

The iq_plkafion of genetic algorithms to fuzzy logic controllers holds a great deal of promise. Previous work has
been done mainly in two areas: learning the fuzzy rules used in a conu_ller and learning membership functions. These two
areas are the most time consuming of fuzzy conflict design and are for the mint part done by trial-and-en_. This
methodology is lacking in two main respects: it may take too much time to get a satisfactory rule set or set of membership
functionsand thereislittlechancethattbesesetswiU beo_timal.Genetic alscritlm_ has lhe ability to improve both of tlz_
shortcomings. OA's _ enables it to cover a COml_X search si_ce in a relatively _ period of lime while ensuring

an ol_n_d c¢ near.ep_im_ solntim. Became of Ibis capability, GA is a mteral match for fuzzy coetmUem.
Tln_q'sI_0er_examlnedthefeesil_ili_ofualngGA tofledfazzyrides.Intiffsl_0er,fuzzyeonlmlsynlheslswu

done indecision_ form, The problemexaminedwas centeringa cartof mass m on a one dimemloml track.The

objeceveis tomovethecartf emagiveeinitialpositimandvetocitymzeroposifimandvelocityinminimumtime."I'ais
is dora tlm3ugh the q_plicatim of a force F f_em the o_tmUer, l_r 100 ram wilh rmdom _ming poims, the averMe
number of timestel_forthehand-desilaedfm=y _muollertobrin8 the cart to zero lX_fioe and velacity was 164. In
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compm'Lgm,aGA designedcontrollerusingthesamestartingpointshadanaverageof143timesteps.As _ no_d,while

the GA based fuzzy rule_ performed reasonably well, work could be done to fu_u_ improve its performance, such as leUing
GA determine the endpoints of the membership functions.

Kana examined using GA to find high-performance manbenhip _ for | conlroller for the a pole.¢_ system.
The task for the conlroller is as follows:

A wheeled c.m has a rigid pole hinged to its top. The cart is free to move right or left along a straight
bonnded track and the pole is fzce to mo_ within the vertical plane pmflkl to the tack. The cart is to be

"kept within the pre_fined limits of the track and the pole should be prevented from falling beyond a
Wedefined vertical angle by applying a force of fixed magnitude to the left or right of the base of the cat.

The objective is to bring the cart to rest at the center of the track with the pole Imlmced, much the same as in Tlaifl's paper.
Also, he examined the use of micro.G& a small population GA developed by Krislmakumm a, to determine an adaptive real-
time controller for the same problem where system _tm's may be time varying. In determining the membership
functions, GA was used to determine the anchor points for each of the linguistic variables used. _ the non-adaptive
problem, the GA designed fuzzy logic conlroller con_lently outperformed the hand-d_gned conlroller. For the adal_ive
controller, the perfc_nance was even _ the non.adaptive author designed controller always became unstable, while the
non-adaptive GA conwoller and the micro-GA designed adaptive controller were always able to cemplete the task. The
difference between the two GA designed controllers was in their convergence times; the micro-GA conlroIle¢ consistently
balanced the system faster than the non-adaptive GA controller.

Previous work do_ with optimizing fuzzy conlroLlers has dealt with op4imJz_ membership functions or rule sets.

Forexample,Mamdani andProcy_°itm-ativelydesignedmember_p functions,Thrift_usedGA todesignrulese.ls,andKarr

used GA to design membership functions". These methodologies have a major limitation; how can an optimal design he
obtained when one of the two main components is designed in a non-optimal melhod. Logically, to obtain an optimal rule
set and set of membership functions, the two must be designed together so the links between them can be fully exploited.
]By m/rig GA to design both s_nultanec_y, the two elements of fuzzy conm/le_ can be fully integrated to deriver a more
finely tuned, high performanceconUuller.

3. PROBL£M DF.S_ON AND...METHODOL(X_Y

3.1 Cart-Cen_n_ Problem

A common problem used in _ is the centering of a cart of mass m, on a o_,_enskmal track. The input
variables for this problem are the cart's locafio_ on the track, x, and the cart's velocity, v. The objective was to fred a
controll_ which could provide a fct_e F which would bring the cart to x,,,Oand v,,,Ofrom an arbiltary initial condition (xo
and vo) in minimum time. The equmiom of motionforthecan are.:

_t ÷ '_)- x(t)+ '_v(t)

v0 • '_)- v(t)+ '__(t)
/71

(2)

m
w

where _ is the time step. The values for the constants and the range of values of the variables are given in Table L
Three con_rollen were developed for the cart-centering problem. They will be referred to by the number of fuzzy

sets that pertifion the x-location, velocity, and output. For example, the conl_oiler which had the velocity divided into 5 fuzzy
the x-location d/vided into $ fuzzy sets, and the output divided into 5 fuzzy sets wm called _he 555 conm311_. While

GA w_ allowed to delamiae the location of the Iriangle bases for the laput variables, the output fuzzy _et locations were
fixed. TIz _ oett_ fuzzy membmhip fanctiom m_ _ In F_ 2.4.

t
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Table I Constants and Ranges for Cart Problem

V_iable _"

i

m

i

F
ii i

Value

i

,,20ke
.02 sec

i

-2 to +2 m

-2 to +2 m/s

-150 to +150 N
I

u

1,4

1,1

o.4

U

Fi&qu'e2 Output Divided Into 3 Fuzzy Sets Figure 3 Output Divided Into 5 Fuzzy Sets

L J,

1,4

o.timt

Figure 4 Output Divided Into 7 Fuzzy Sets

32 So_ and _a0n_

The trois for the software used in this pa_ is the Simple Genetic Algorithm (SGA) program developed by
Goldber_. The program was ran on a 25 MHz 80386 computer with a 80387 math coprccesscz. The SGA program allows
the user to define the values for population size, maximum number of generations, pn_lbility ct' crossovez, and probability
of mutation. The vatues used for these ;mnunetm m givea in Tabk ]I. Since nm time became exUvzne_y king,
size wm kept at a relatively mntU number, 100. This did lead to _l_ul_es whm l_er raringsiz_ w_m: us_i and will _
dhcumed in the _ chapter.

3.3 Modificat_ of Su'm_ S__u_f_._

Th_ Simp_ Oe_k: _ um btumy m_s _o em_ d_ immmmms v/ai¢_ m to !_ _ Whil_ d_i_
meO_ could _1_o be u_! in _ dem_imtim of tl_ fury _ de_illn, a more __i_ _ _ c_.
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F'ust, tl',¢numb= of allcle_ was determined from the size of the rule set plus the numb= of hu_zy sets treedto partition the
" " - Table H Parameters Used in SGA Program

|

Parameter
II

of

, Pi

P,

Value
III

100

100

O.7

O.O3

spacesoftheinputva'iables.Forthecartcenteringproblem,theshapesofthefxkngleswhichformedtheoutputspacewere
whiletheinputv_'iables,x-locatioaand velocity,wereeachl_]tionedusingEve triangles:negativemedium (NM),

negative_ (NS),zeroCLE),IX_i_v¢small(PS),andpositivereed/urn(PM)."theruleset,then,containedtwenty-five(5

x 5)rulestoaccountforeverypossiblecombina_onofinputfuzzysets.The rulesareoftheform,IF(xis{NM, NS, ZE,

PS, orPM}) and (vis{NM, NS, ZE, PS,orPM}) THEN {output},whereoutputisone ofthefuzzysetsusedtopartition

output space. The two input spaces use a total of ten lrians]es, so the sizing to represent a given rule set and membership
function combination would have th/rty-five alleles (25 + I0). Note tlm the term alleles is used instead of bits, because the
value of each allele contains eith= the output fuzzy set to be used (for the first twenty-five alleles where N_:I, NS=2, etc.)
or the value which will be conveaed to the length of the base of the u'iangles which make up the input spaces (the last ten
alleles). The calculation of the Mangletmsesfromlheallelevalues(1-5) were done m follows:

I. Subtract 1 from the allele value (making the range now 0-4).
2. Subuact this value fzom I (which is the distance between the peaks of each triangle).
3. Double this value and divide by I0, giving the base length for each psnicular triangle. This value can be anywhere

from 1.2m to 2.0m.

Thus we ate able to incorporalethe two main in_ of a fuzzy conuoller, the rule set andthe membe_h_pfunctions,
into a s_ng]e ruing which GA will seek to optimize. This is shown inthefollowing example.

String:

String:

14321524321245143122113454525234124

I1432152432124514312211345_ 45252 I

[ rule set I x-location ]
I J locations I

34124 J
velocity ]

locations I

x-location

NM NS ZE PS PM

NM I 4 3 2 I

NS 5 2 4 3 2

ZE 1 2 4 5 1
, [,

PS 4 3 1 2 2

PM I 1 3 4 $
|

RuleSet
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Figure $ Example of $trins-Fuzzy Controller Conversion

4.1/_i_isl CgnclitJons

To f'md a satisfactory controll_, the contloUer must be able to operate over the entire range of the input spaces. For
OA to properly design fuzzy conlrollers, this fact must be integrated into the function eva]uafion. This was done by using

muldple inidal conditions in the evaluation of each member of the population. If a single initial condition wer_ used, for
example xo = 0.7m and Vo= -0.5m/s, rhea GA would find a conlzulka which would wcck well mound that particular po/nt
but may fail elsewhere. This makes the choice of initial conditions an important consideration. The points must be chosen
to sufficiendy cov_ the input spaces, but at the same time, the mo_ initial conditions used, the mosz time the program takes
torun. These initial conditionsa_ listedinTable m.

4.2Fitn_ Fq_cfi_

The fitnessfunctionIXovcdtobethcmostchallengingaspectofapplyingGA tofuzzycontrollerdesign.As stmcd

e,aHie,r,theprocessfinallywas dividedintotwostages,anevolutionstageanda rcf'memcntstage.Intheevolutionstage,GA

was used w find satisfactory conlroller_, while in the n_memenl _e, GA used the l_eviously developed controllers and
anempl_l to minimize the amount of t/me needed to Ix'ins both x-location and velocity to zero.

Table HI Initial Conditions

Conln)lle_

333

5557

7"77

Inidal Conditions (xo,v_

(o,o;)

(-2,-2)(-2,0)(-2,2)(.4/'3,.z,/3)(-4/3,4/3)(-2/3.-2/3)

(-2/3,;7J3)(0,0)(2/3,-2/3)(713.773)(4/3,4/3)(4/3,4/3)

(2,-2)(2,0),

For thefirststage,whichlastedtlzroughgeneration30,d_ fimessfuncdonre_ a member of the _pulation

acconlingtohow wellitcame tothetolerancevaluc,:i:0.5forbmb x-location md velocity. Iftbecontmlk=_ in

bringing x md v wilh/n the tokrance, i_was glven a fitness rela/ive So lhe time it took. if lhe _ "I/reed out," i_ was
either sligh_y punished with a neg_ve times or slighdy revas_led depending ee x-loc_on and ve,loci_y. If the coem_Uer

diverged, the fimeu was given a _ _el_Uive value. The first (m_ess funcl/o_ is shown below.
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if (Ixl < 0.5) and (Iveloci_l < 03) mcn
times = 8 *" 175 /time

clsc if (time = 175)then

(Ixl < l,o) and(Ivek)c/tYl< 1.0)men
fimea= 3_ / ,qn( x_+ ve_ci_ )

else
fimem = -1

else
- fimeas = -7

The total fitness was then iOvenby the sum of the fimesses de_mlned for each initial condition. Through the use
of this reinforcement/reward scheme, GA was able to dew,lop controllers which could solve all the initial condition_

The second stage, from generation 31 to geuetafion 100, was based almost completely on time. If the controller
reached the tolefanco values it was rewarded _g to how short a time it took. If the controller "timed out, = it was
punished according to how much it missed the tolerance values, and if the coniroll_ diverged, it was given a very large
negative fimess which would probably ensure its failure to continue on to the next 8Chelation. This illness function was given
as"

if (Ixl < 0.5) and (]velocity] < 0.5) then
illness = 3 * (175 - time)

else if (time = 175) then
filaeu = .42 * sq_rt(x2 + velocity _ )

else
fimeu = -300

_L

k

4.3333 Cgn_ll_"

The 333 controller was the simplest controller to design. It consisted of only 9 rules, and the number of triangle
base locations to be determined was 6, yielding a total string length of 15. The controller determined by GA is shown in
Figure 6.

N ZE P

N 3 3 I

velocity ZE 3 2 1

P 3 I 1

_ 333 Cmtroiier

i !±!
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The 555 cmtroller used 25 rule_ and needed 10 alleles to determine the location of the bases of the fuzzy sets

covering the inImt simces. With a total string leni_h of 35, the first indication that beuer perfonnan_ could be obtained with

larger Poimlafioa sizes became apl_fent. C_g that each allele could have • val_ between 1 and 5, this meant that

ff • binas_ string had been used, 3 bits would be _ to rel_,_,nt the same inf(xmalion. This would yield a string

length of 105. A population of 100 cannot begin with •muSh diversity to assure that the semch space will be su_clently
covezed to enable GA to find the optimal solution. Even with • relatively small IX_Puhtti_ size, the run time took between

two mdC_.half to three hours. However, the pe_emance of the controller did indicate that GA was finding • ne_-ol_inud

conU'oUer. Figure 7 shows the msultmt best control• detmnined by GA.

x

_-= NM NS ZE PS PM
! _ II III

( NM 5 4 4 4 2
| ,|

i_-_ NS 5 5 5 I I

-z ;

[- _

W

(

velocity ZE 5 5 3 1 1
i

PS 5 5 I I I

PM 4 2 2 2 1

IM

It/

_r4_m_m

it

Figure 7 555 Controller

4.5 777 Controller

final con_ designed was the 777 _ller. This con_l_er took the most computer lime to _ because

of the long _-iag length (63 alleles) and the large number of initial conditions (17). Run times took between seven and eight

hoers. The best performing conlroiler designed by GA is shown in Figure 8.

4.6 _ of Cart Controllers

GA had been used m _ the _erent C_E_, • study was made to de_nnine their __e

stability, i _ _ ao_ _ to_ s_ for_ con_ u _ is forc_ _ stle-
sp_ce cm_lle_ a "tru_ force" _ was adopt_ To examine the _, the input _ce of each variable was

d/vided Into 40 ix_ Thin e_ pointwm exmlned, me by ore,todetmaiee iftbe commi_ diveled m_ in_

__. __ m _ x-_ __m i_ _ _ _ _ _ ai_ 1__

While the ability d s _ to mtisfy aU tlmse points does not necesmily gutraatee in stability (since it only takes one

IX_t to rake a camoikr unsttble),thisdideamm someazmum of cmli4ar.e in thepmcatum. Whileemninm"S ew.h
_ U waI a _ t,-I, me / _ ne_ _ _ _ m _l-n Ibe_el_h_ wilhinthe tokrmee valoat,

and these nemben are _ivm la Td_ IV. Also drown in _ IV ts m addifioral555 controi_ desi_aed with
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membership functions fixed. GA was used to design only a rule set, with the membership furrctionbein 8 done by hand. This
conn'oller,shown in Figure9,was createdforcomparisonpurposesto illu,suamtheimlmrmnceof membershipfunction

selection.As TableIV showsallthecontrollerswereabletosuccessfullybringthesystemwilhinthetolerancevalues.

X

NL NM NS ZE PS PM PL

NL 7 5 3 7 7 1 2
• I

NM 7 6 6 7 3 2 1
Ill

NS 7 6 7 7 1 1 1

velocity Z_ 7 5 7 5 1 2 2

PS 6 6 6 1 1 4 1

PM 6 6 6 I I 6 1

PL 6 5 I I 5 2 I

Fi&_re S 777 Conm_ile_

Table IV Com__[son ofCan Conu'oUers
• ,|

No. ofIRi[ialComlitions

Time F ui ,

Avg.No. ofTime Steps

% Diffc_acew/555Comroll_
l

No. ofFailures
I ii iii i ll|l

333

1600

82380

51.49

20.8%

0

555

1600
ii ,

682O8

42.63
H

,l

777 555

i

1600

78958 90156

4935 5635

14.8% 32,2%

0 0
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Table IV shows that the best performance, on average, came from the 555 controller. The 333 controller, while being
the simplest, did not hav_ the flexibility to produce fast response times. On the other hand the 777 controller had too much
flexibility and became bogged down in the number of ride evaluations required for each force calculation. Finally, note that
while the 555 controller with the fixed membership function was able to bring the cart to equilibrium for all points, its
l_rf_ was clearly inferior, needing almost 1/3 longer than the GA designed rule Jet and membership function
combination, indicating the importance of proper membership function design.

X

NM NS ZE PS PM

velocity

NM 5 S 5 3 2
ll 1

NS $ 5 5 1 1

ZE $ 5 3 1 1

PS 5 5 1 I 1
i

PM 5 I 4 2 1

Fi_m'e9 555 Controller w/F'tx_edMembership Functions

_. ¢ONCLVSION

Thispaperdearlyshowsthepotentialforusinggeneticalgorithmstosolveoptimizationproblems.The abilityof

fuzzylogiccontrollerstoprovidecontrolwheremoreconventionalmethodsbecome toocomplexhasalsobeenshown by

researchers.Thiswork hasshown thesetwo,fairlynew,methodscanbe usedtotogethertoformcontrollerswithoutthe

previously needed human expert. This methodology allows the complete design of bothmajor components of fuzzy
controllers, the rule sets and membership functions, leading to high performing conlrollers which are completely computer
designed. We have shown three di_en_t controllers forthe cart problem, each (_ which was able to bring the cart to
equ/h'brlumovertheentirerangesoftheinputspaces.While theseresultsareencouraging,more work must be done on

refiningtheproce . Fnm,morepowerfulandfastercompute willallowtheuseof largerpopulations/zes,and, therefore,
greater diversity. Work will be done to examine the development ofa robust controller, where the parameters in the equations
of motion ate nc longer fixed to a specific value, bet can instead be a range of values. Also, the need to ensure the
l_erformance of the controller when faults occur in the rule _et should he investigated to see ff this would alter the
ce_figurafion of the rule set. FmaUy, controlle_ for oth_ problems should be developed to show the effectiveness of this
method.
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